NAS ALAMEDA, INSTALLATION RESTORATION SITE 2

PURPOSE

 Evaluate subsurface site conditions for future remedial action and associated construction activities (landfill cap)

OBJECTIVE

- Location, identification and removal of Ordnance and Explosives Waste (OEW)
- Characterize existing soil covers
- Identify seismic hazards
- Perform preliminary engineering analysis

SCOPE

- Ordnance and Explosive Waste (OEW) Characterization and Time Critical Removal Action
- Geotechnical and Seismic Investigation
- Geotechnical Feasibility Study

INSTALLATION RESTORATION SITE 2 BACKGROUND

PROJECT SITE

- IR Site 2 110 acres total, includes an additional investigation area between IR Sites 1 and 2 formerly used as a runway
- Portion of IR Site 2 (~77 acres) was used as a waste disposal area for NAS Alameda between 1956 to 1978
- Wetland area identified within IR Site 2 (~30 acres)
- IR Site 2 to be transferred to USFWS for use as a national wildlife refuge following design and construction of the recommended remedial alternative

ORDNANCE AND EXPLOSIVES WASTE (OEW) CHARACTERIZATION AND EMERGENCY REMOVAL ACTION

SCOPE

- Location, identification and removal of any OEW on the ground surface within boundaries of IR Site 2
- Removal of OEW below the ground surface from the Possible OEW Burial Site located within IR Site 2

KEY WORK ELEMENTS

- OEW Surface clearance
- OEW Below surface clearance (Time Critical Removal Action)

OEW SURFACE CLEARANCE

Visual reconnaissance

- Access roads, staging areas and support zones
- Vegetation removal to facilitate location of surface OEW
- Grid-by-Grid Surface Sweep
 - Site grid established for ordnance characterization
 - 200-foot by 200-foot surveyed grid
 - Locations of items identified by northing and eastings distances
- Establishment of Exclusion Zones (EZ)
 - Identification of where explosive hazards are likely to be present
 - Most Probable Munition (MPM) identified that might be encountered at IR Site 2
 - 20-mm high explosive projectile

TECHNICIANS PERFORMING SURVEY OF SITE GRIDS FOR SURFACE SWEEP

DEMILITARIZED 20-MM TRAINER ROUNDS

TROMMEL PERFORMING SOIL SIFTING AT POSSIBLE OEW BURIAL SITE

OEW BELOW GROUND SURFACE CLEARANCE (TCRA)

- Possible OEW Burial Site ~ 2.5 acres
- Excavation below ground surface to depth of 1 foot
 - Technicians sweep excavation path with mine detectors
 - Significant magnetic anomalies removed
 - Soil removed in 6-inch lifts, one grid at a time
 - Technicians visually verified and monitored all cuttings for OEW
 - Mechanically screened to separate trash and debris
 - Screened soil used for backfill
 - Tailings visually inspected by technicians for presence of OEW prior to backfill placement
 - OEW recovered was demilitarized and disposed of as nonhazardous waste

GEOTECHNICAL AND SEISMIC INVESTIGATION

*** KEY WORK ELEMENTS**

- Field Investigation
- Geotechnical Soil Testing
- Geotechnical and Seismic Analysis

FIELD INVESTIGATION

- ON-SHORE AND OFF-SHORE DRILLING
- EXPLORATORY TEST PITS
- **ONE PENETROMETER TESTING**
- **TOPOGRAPHIC AND BATHYMETRIC SURVEYS**
- WETLANDS DELINEATION

GEOTECHNICAL SOIL TESTING

- **STRENGTH PARAMETERS**
- **SOIL CLASSIFICATION**
- SETTLEMENTS
- **BEARING CAPACITY**

GEOTECHNICAL AND SEISMIC ANALYSIS

- **LIQUEFACTION EVALUATION**
- SLOPE STABILITY
- **GROUND RESPONSE ANALYSIS**

PERIMETER SLOPES AND POTENTIAL SLOPE FAILURE AT IR SITE 2

Subsurface Profile for Ground Response Analysis

GEOTECHNICAL AND SEISMIC HAZARDS IR SITE 2

LIQUEFACTION POTENTIAL

- Fill material classified as liquefiable
- Seismically-induced settlements estimated up to 18 inches (Generally accepted differential settlement of structures < 1 inch)
- Liquefaction-induced lateral displacements approximately 20 ft. (Generally accepted lateral displacements < 1 ft.)

SLOPE INSTABILITY (with soil cover)

- Static FS between 1.46 and 2.58 (State of practice, Factor of Safety > 1.5)
- Post-EQ static FS between 0.86 and 1.94 (USACE guidelines, Factor of Safety > 1)
- Predicted permanent lateral deformations of 4 to 19 ft. (Generally accepted lateral displacements for slopes supporting structures < 6 inches)

GEOTECHNICAL FEASIBILITY STUDY (FS) AT IR SITE 2

OBJECTIVE

Prevent release of waste into San Francisco Bay

PERFORMANCE CRITERIA

Limit permanent lateral displacements to 4 feet

EVALUATE REMEDIAL ALTERNATIVES

- CERCLA Guidelines and EPA Screening Criteria Identified
- General Response Actions (1) Soil improvement and
 (2) Physical buttresses
- Developed 20 remedial alternatives

PROPOSED ALTERNATIVES

Alternative No.	Description	Type of Response Action		
		Soil Improvement	Physical Buttress	Combined Method
1	Wick Drains with Surcharge	X		
2	Stone Columns with Surcharge	X		
3	Sheet Piles with Anchors		X	
4	Stone Columns with Surcharge and Sheet Piles			X
5	Soil Cement Gravity Wall and Stone Columns	X		
6	Concrete Wall		X	
7	Excavation with Riprap		X	
8	Drilled Concrete Piers with Stone Columns			X
9	Pre-cast Concrete Piles		X	
10	Wick Drains with Surcharge and Sheet Piles			X
11	Excavation along Shoreline and Soil Backfill	Х		
12	Partial In Situ Solidification	-X		
13	Soil Bentonite Cutoff Wall		X	
14	Riprap Embankment in the Bay and Soil Backfill	X		
15	Inclined Timber Piles		X	
16	Consolidation with Surcharge	X		
17	Wick Drains with Vacuum	X		
18	Vibrated Beam Cement Bentonite Cutoff Wall		X	
19	Vibrated Beam Impermix Cutoff Wall		X	
20	Soil Cement Gravity Wall			Х

SELECTED REMEDIAL ALTERNATIVES AT IR SITE 2

RECOMMENDED ALTERNATIVE

- Alternative #5: Soil Cement Gravity Wall and Stone Columns
 - Construction of a 17- to 38- foot wide soil cement gravity wall in the Young Bay Mud layer and installation of stone columns in the fill layer
 - Provides for reduction of liquefaction potential and containment of liquefiable soils behind the improved soil zone

SOIL CEMENT GRAVITY WALL WITH STONE COLUMNS

